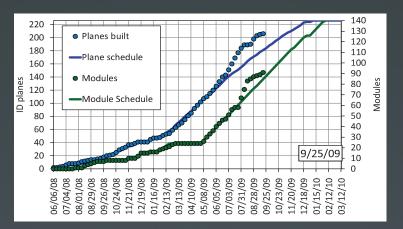
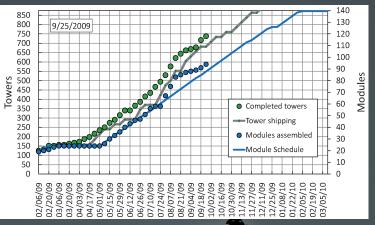
MINERVA Status Report

Deborah Harris, Mike Kordosky, Kevin McFarland, David Schmitz

1 October 2009


Outline


- Construction Status
- Installation Status
- PMT Cross-talk Update
- Tracking Prototype Data Processing
- ArgoNeuT Geometry and Simulation

MINERVA Construction Status

- Scintillator Planes (Projected done 10/30)
 - 14 planes left to finish (206+20 total)
 - Rate limited by WLS fiber delivery
 - Currently project to be done by 10/30
- OD Towers (Projected done early Dec.)
 - 149 towers left to finish (887 total)
 - Baseline rate is 16/week
 - 99% of WLS Fiber for this task is mirrored and at factories
 - Expect to be done by early December
- Steel Frames (Projected done next week)
 - <5 frames left to weld (116 total)</p>

MINERvA Construction Status

- Module Assembly
 - Have 48 modules left to build as of 9/28
 - Out of 24 TP modules + 116 "final" modules
 - Rate limited by module mapper
 - Have moved folks from plane assembly to module assembly to increase speed during installation
 - Current projection to end January 25, 2010
- Clear Fiber Cable Production
 - Have \sim 850 cables left to produce (out of \sim 4200)
 - Rate limited by Lab 7 cutting back connectors
 - Current guess (to be quantified soon) is to finish by end of November

Where is MINERVA?

HCAL, ECAL and 10 "Tracking
Prototype" Tracker planes are underground

Winter install
Remaining fall install (24)

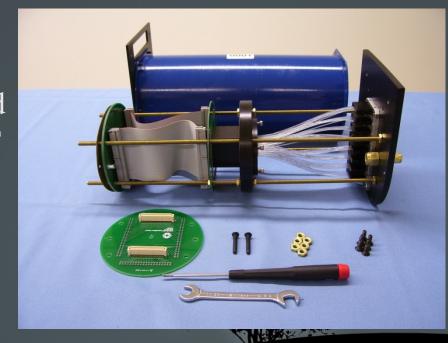
Fall Installation Status

- All modules for fall installation completed
- Unit of installation is "module stack"
 - Four modules that share instrumentation
- Instrumented 6 of 16 module stacks (28 Sept)
 - MS #7 in progress
 - MS #8-10 on stand in near hall

Fall Installation Status (cont'd)

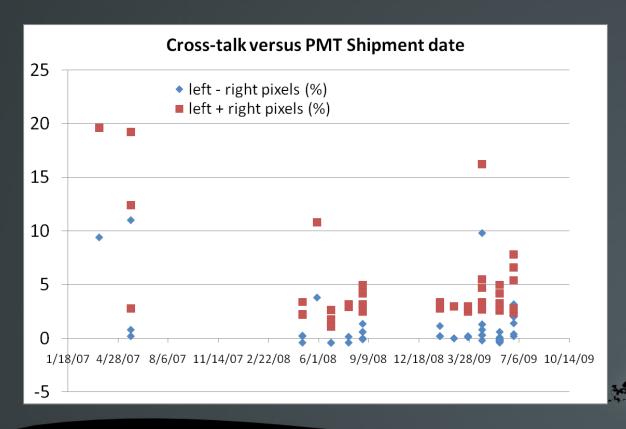
- Instrumented 6 of 16 module stacks (28 Sept)
 - Tracking Prototype adiabatic rate was 2/week
 - Most likely will choose to install more slowly, at a pace of 1.5/week
 - Test all PMT boxes
 - Give priority to module assembly in resource conflict
 - Don't burn out physicist oversight of installation and module assembly

PMT Box Cross-talk


 After looking at the Tracking Prototype Muon data, we realized that there was high cross-talk in many of the PMT boxes that we had (roughly 20% failed spec)

Have been investigating the sources of this high cross-

talk


 Misalignment between the cookie holding the fibers and the piece that holds the PMT (most common problem)

 Misalignment between the PMT and its holder (one example seen so far)

PMT Box Cross-talk Test

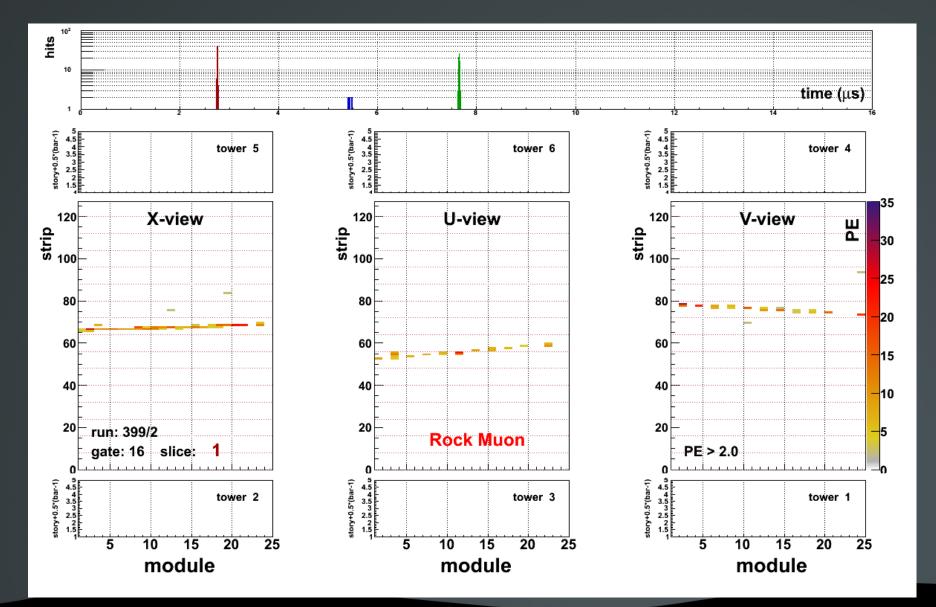
 New requirement that PMT Boxes be tested for cross-talk before installed on detector

PMT Testing Plan

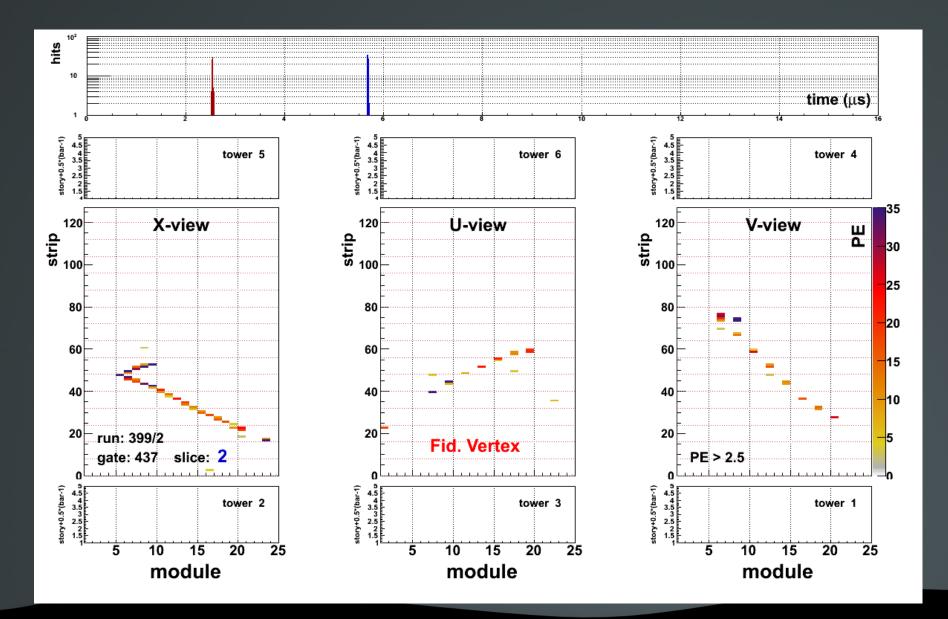
- Currently testing ~5PMT's per day with setup on 14th floor (including weekends)
- Upgrading to new test facility in Lab F "temporary" clean room where we can test 4 PMT's at a time (to do 16 per day?)
- Tony Mann (Tufts, L2 manager of boxes) has been training Dan Ruggiero (Rochester) on how to repair common misalignment problem
- Need to develop repair and retest plan
- Newer PMT's have lower failure rate than tracking Prototype PMT's (10%, not 20%)

Tracking Prototype Data Set

- A preliminary complete reconstruction pass of the Tracking Prototype data from the NuMI beam run (April 19-June 15, 2009) has been performed
 - Basic data quality checks performed for each run and spill
 - Detector activity "time-sliced" within each beam spill
 - Pattern recognition filters applied to time-seperated "events"
 - muon entering the front of the detector
 - vertex activity contained in a fiducial volume of 8 tracking modules (neutrino candidate)
 - 16 planes, 87 strips/plane, ~0.5 tons CH


Tracking Prototype Data Set

- Ran about 80% live!
 - Amazing for first run, esp. since DAQ problems meant we had to stop data taking to acquire pedestals
- Met projections of calculated statistics
 - However, did identify (and fix at end of run) a major readout firmware bug that left some hits with unreadout hits
 - Some data will be recoverable; some not


Preliminary data-based estimate of event statistics in TP run

NuMI Beam Triggers	1.1 M
NuMI Beam Spills with good proton beam	0.8 M (4.3E19 POT/5.3E19 delivered)
Time-separated detector activity	1.95 M
Front entering muons	510 k (380k w/o readout error)
Vertex activity in fiducial volume (0.5 t)	17 k (9k w/o readout error)

Front Entering Muon Event

Contained Vertex Event

ArgoNeuT Material Modeling

- Thanks to Brian, Larry, Bonnie, we understand the CAD drawing conversion to GDML geometry
 - This, allows for a GEANT but not ROOT geometry
- Unfortunately, we cannot easily integrate this
 - We use a format (Gaudi XML) well suited to repetitive definition of regular material like MINERvA and MINOS
 - A reasonable choice, given the scenarios we planned for.
 - No automatic converter
 - All options we can conceive of (parameterize ArgoNeuT, insert bare GEANT geometry into our simulation, stand alone ArgoNeuT swimmer) involve significant human intervention/development
 - MINERvA requests assistance with this